[スポンサーリンク]

化学者のつぶやき

先端の質量分析:GC-MSおよびLC-MSデータ処理における機械学習の応用

[スポンサーリンク]

キャラクタライゼーションの機械学習応用は、マテリアルズ・インフォマティクス(MI)およびラボオートメーション(LA)において材料やサンプルの性状を迅速かつ高精度に評価するための鍵となります。本稿では、GC‐MSおよびLC‐MSによる質量分析において、従来手法が直面していたデータ量の膨大さ、ピーク形状の変動、保持時間のシフト、ピーク重なりといった課題に対し、機械学習や深層学習を活用したデータ駆動型解析アプローチを紹介します。前処理の自動化・高速化や再現性の向上、未知成分の同定が可能となり、解析の効率化と正確性の大幅な改善が期待されます。

GC-MS/LC-MSについて

質量分析は、化合物の構造解析や定量において極めて重要なツールです。中でも、ガスクロマトグラフィー‐質量分析(GC‐MS)および液体クロマトグラフィー‐質量分析(LC‐MS)は、サンプル中の成分を分離し、高精度で検出できるため、環境分析、医薬品研究、プロテオミクス、メタボロミクスなど多岐にわたる分野で活用されています。
GC-MSは、ガスクロマトグラフィーと質量分析を組み合わせ、主に揮発性で熱的に安定な化合物の解析に優れています。
LC-MSは、液体クロマトグラフィーと質量分析の組み合わせにより、分子量が大きく、極性が高く、熱に弱い分子の解析に適しています。
近年、従来のピーク抽出や手動パラメータ調整に頼った解析方法から、機械学習や深層学習を活用したデータ駆動型解析へと進化しており、これにより以下のようなメリットが得られています。
自動化・高速化:データの前処理から解析、結果の解釈までが自動化され、膨大なデータ量にも迅速に対応可能。
再現性の向上:人為的な調整に依存しないため、解析結果の一貫性が高い。
未知成分の同定:データ全体を統計的に解析することで、既存データベースに存在しない未知の化合物も候補として提示できる。
本稿では、これらの背景を踏まえ、最新の機械学習技術とデータ駆動型解析アプローチが、GC‐MSおよびLC‐MSデータに内在する課題にどのように対応しているか解説し、応用例についてもご紹介します。

GC-MS/LC-MS における課題

GC-MSおよびLC-MSデータの解析は、その二次元的な性質に起因する独自の課題を伴います。二次元的な性質とはすなわち、「時間経過に沿ったクロマトグラフィーによる成分分離」および「各時間点で取得される質量スペクトル情報」を同時に考慮しなくてはならないことを指します。
この二次元情報の組み合わせにより、様々な解析上の課題が発生します。

  • データ量の膨大さ
  • ピーク形状の変動
  • 保持時間のシフト
  • ピークの重なり

これらの問題は、装置の個体差、汚染、使用されるカラムの種類、さらには厳密なキャリブレーションや正規化処理の必要性といった要因によってさらに複雑化します。

図1. GC-MS/LC-MS分析の課題

 

データ駆動型アプローチによる従来の解析課題の解決

上述した従来の解析課題のそれぞれについて、データ駆動型での解決アプローチを紹介します。

課題1: データ量の膨大さ

GC‐MS/LC‐MSでは、1回の測定で数百の時間点・数千の質量スペクトルが生成されます。これにより、解析対象となるデータの総量は非常に大きくなり、従来の手法ではデータ処理の計算負荷が著しく高いという問題がありました。
また、従来のピーク抽出処理では手動パラメータ調整、データの前処理に伴う情報ロスといった課題がありました。
これに対して、機械学習による自動セグメンテーション手法を活用できます。たとえば、クロマトグラムを適切なセグメントに分割し、各セグメントの情報をテンソル分解により圧縮することで、必要な情報のみを抽出できます。

課題2: ピーク形状の変動

同一成分であっても、装置や試料条件の違いによりピークの形状は大きく変動します。従来の手法では、固定の閾値や定型的なピーク抽出アルゴリズムでしか対応できず、正確な同定や定量が難しい場合が多くありました。
標準的なピーク抽出アルゴリズムでは、ピークの幅・高さ・形状の変動を十分に捉えられず、重要な情報が失われます。
畳み込みニューラルネットワーク(CNN)などの深層学習モデルを用いて元データ全体を入力とすることで、複雑なピーク形状や微妙な変動パターンを学習し、より正確なピーク検出を可能にします。微細な信号が正確に抽出されることで、後続の解析精度も向上します。

 続きはこちら

本記事はMI-6株式会社から提供された記事を引用し作成しています。 

関連記事

Avatar photo

ケムステPR

投稿者の記事一覧

ケムステのPRアカウントです。募集記事や記事体広告関連の記事を投稿します。

関連記事

  1. 酵素合成と人工合成の両輪で実現するサフラマイシン類の効率的全合成…
  2. ケミカルバイオロジーがもたらす創薬イノベーション ~ グローバル…
  3. ポンコツ博士の海外奮闘録 ケムステ異色連載記
  4. TBSの「未来の起源」が熱い!
  5. 不均一系触媒を電極として用いる電解フロー反応を実現
  6. 【朗報】HGS分子構造模型が入手可能に!
  7. 【追悼企画】カナダのライジングスター逝く
  8. 学術変革領域(B)「糖化学ノックイン」発足!

注目情報

ピックアップ記事

  1. 第128回―「二核錯体を用いる触媒反応の開発」George Stanley教授
  2. 脱離反応 Elimination Reaction
  3. リアルタイムで分子の自己組織化を観察・操作することに成功
  4. 信越化学1四半期決算…自動車や電気向け好調で増収増益
  5. ジピバロイルメタン:Dipivaloylmethane
  6. ユーコミン酸 (eucomic acid)
  7. 多摩霊園
  8. 【マイクロ波化学(株)ウェビナー】 #環境 #SDGs マイクロ波によるサステナブルなものづくり (プラ分解、フロー合成、フィルム、乾燥、焼成)
  9. モリブデンのチカラでニトロ化合物から二級アミンをつくる
  10. 有機合成化学協会誌2020年10月号:ハロゲンダンス・Cpルテニウム–Brønsted酸協働触媒・重水素化鎖状テルペン・エラスティック結晶・複核ホウ素ヘテロ環

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2025年3月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー